The bacterial translation stress response.

نویسندگان

  • Agata L Starosta
  • Jürgen Lassak
  • Kirsten Jung
  • Daniel N Wilson
چکیده

Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli

Heat shock response is a classical stress-induced regulatory system in bacteria, characterized by extensive transcriptional reprogramming. To compare the impact of heat stress on the transcriptome and translatome in Escherichia coli, we conducted ribosome profiling in parallel with RNA-Seq to investigate the alterations in transcription and translation efficiency when E. coli cells were exposed...

متن کامل

Stress Response and Virulence of Heat-Stressed Campylobacter jejuni

Thermotolerant Campylobacter spp. frequently cause bacterial gastroenteritis in humans commonly infected through the consumption of undercooked poultry meat. We examined Campylobacter jejuni heat-stress responses in vitro after exposure to 48°C and 55°C. The in vivo modulation of its pathogenicity was also investigated using BALB/c mice intravenously infected with stressed C. jejuni. Regardless...

متن کامل

Unveiling the Role of the Integrated Endoplasmic Reticulum Stress Response in Leishmania Infection – Future Perspectives

The integrated endoplasmic reticulum stress response (IERSR) is an evolutionarily conserved adaptive mechanism that ensures endoplasmic reticulum (ER) homeostasis and cellular survival in the presence of stress including nutrient deprivation, hypoxia, and imbalance of Ca(+) homeostasis, toxins, and microbial infection. Three transmembrane proteins regulate integrated signaling pathways that com...

متن کامل

Diverse roles of endoplasmic reticulum stress sensors in bacterial infection.

Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of th...

متن کامل

Quantitative effect of target translation on small RNA efficacy reveals a novel mode of interaction

Small regulatory RNAs (sRNAs) in bacteria regulate many important cellular activities under normal conditions and in response to stress. Many sRNAs bind to the mRNA targets at or near the 5' untranslated region (UTR) resulting in translation inhibition and accelerated degradation. Often the sRNA-binding site is adjacent to or overlapping with the ribosomal binding site (RBS), suggesting a possi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 38 6  شماره 

صفحات  -

تاریخ انتشار 2014